
\

NASA-CR-200140

NASA Annual Report, 1995

Project Title:
Next Generation Methods for Image Data Compression

GT Project Account Number E21-H86

0c: t'?

Mark J. T. Smith, Professor

Georgia Institute of Technology

School of Electrical Engineering

Atlanta, Georgia 30332



NASA Annual Report, December 12, 1995

Project Title: Next Generation Methods for Image Data Compression

GT Project Account Number E21-H86

Mark J.T. Smith, Professor

Georgia Instituteof Technology

Schoolof ElectricalEngineering

Atlanta,Georgia 30332

During thislastyear,we have continuedour work in data compression and techniques

that support image coding. The followingpapers have appeared in printduring thistime

frame;preprintsof those availablewere includedin the lastreport.
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to be interesting: lossless compression extensions, progressive transmission extensions, and
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1. F. Kossentini, M. Smith and A. Scales, "High Order Entropy-Constrained Residual

VQ for Lossless Compression of Images," Invited Paper in the Proceedings of the

International Symposium on Circuits and Systems, May 1995.



2. F. Kossentini, W. Chung, and M. Smith, "Progressive Image Transmission Using

Entropy Constrained Subband Coding," Proceedings of the International Conference

on Digital Signal Processing, June 26-28, Limassol, Cyprus, 1995.

3. F. Kossentini, M. Smith, A. Scales, Tucker, "Medical Image Compression Using A

New Subband Compression Method," 1995 SPIE Medical Imaging Conference, San

Diego, CA, February 26 - March 2, 1995.

4. A. Docef and M. Smith, "A Robust Model-Based Coding Technique fqr Ultrasound

Video," 1995 SPIE Medical Imaging Conference, San Diego, CA, February 26 - March

2, 1995, pp. 203-213

5. W. Chung, F. Kossentini, and M. Smith, "A New Approach to Scalable Video Cod-

ing," Proceedings of the Data Compression Conference, March 1995.

2





Progressive Image Transmission Using Entropy Constrained
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Atlanta, Georgia 30332-0250

Abstract

A recentlyintroducedsubband coderwithjointlyoptimizedmultistageresidualscalar

quantizersand entropycodersisemployedina progressivetransmissionenvironment.Both

thesubband and multistageresidualstructuresareexploitedtoproducea completelyembed-

ded bitstream,making thesubband codersuitableforprogressivetransmissionapplications.

Differentdesignmethodsinvolvingbothcausaland non-causalencoding/decodingprocedures
arepresentedand evaluatedsubjecttopracticalconstraints.The highflexibilityprovidedby

multistageresidualquantizationand theeffectivenessoftheentropycodingstrategyresultin

an attractivebalanceamong reproductionquality,rate,resolutionofprogressiverefinement,

and complexity.

1 Introduction

In progressive compression systems, the decoder uses the incoming bits to reconstruct increas-

ingly better reproductions of the signal being decoded. The user is thus afforded the capability

to view a rendition of the image immediately, with picture quality improving dynamically as de-

coding is being performed. This has obvious benefits for telebrowsing and archival applications,

rate-scalablecodecs,and robusttransmissionapplicationsovernoisychannels.

Progressivetransmissionisrelatedto the theory of "successiverefinementof information,"

which was addressed by Equitz and Cover in [1].They show that a rate-distortionproblem

issuccessivelyrefinableifand only ifthe individualsolutionsof the rate distortionproblems

can be writtenas a Markov chain.Itisalsoshown that while successiverefinementispossible

forsome sourcesand distortionmeasures,itisnot always achievable.Obviously,a sourcethat

issuccessivelyrefinablecan be sentprogressively.However, progressivetransmissiondoes not

necessarilyimply that the sourcebeing transmittedissuccessivelyrefinable.

The questionthat remains tobe answered is:Given a successivelyrefinablesource(suchas

a memoryless Gaussian with squared errordistortionmeasure), can we designa coder where

the quantized source istransmittedprogres._ivelywith no additionalloss? The answer isyes

"This work was supportedinpartby the NationalScienceFoundationunder contractMIP-9116113 and _he

NationalAeronauticsand Space Admlni_tration.
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Figure i: Basicblock diagram ofthe subband encoder

if we had unlimited computing power and memory. However, given limited complexity, it is

almost impossible to design sequential coders that achieve optimality. Thus, by imposing con-

straints supporting progressive image transmission, some additional distortion will generally be

introduced to the final reconstructed image.

The subband coder upon which we build achieves excellent performance results [2], but also

employs non-sequential encoding/decoding procedures. Much of this comes from the use of

subband quantizers and entropy coders that are optimized jointly within and across stages and

subbands. In this paper, we show how to include progressive transmission capability with only

minimized loss in rate-distortion performance.

2 The Subband Coder

As shown in Figure I,the input image isfirstdecomposed intoM subband signalsusing an

analysistransformation. Each subband signalisthen encoded using a sequence of P,n (1 __

rn _ M) residualscalarquantization(RSQ) encoders.The output symbol ofeach of the stage

quantizersisfed intoan entropy coder drivenby a high order stagestatisticalmodel that is

governed by a finitestatemachine (FSM). The FSM allowsthe statisticalmodel to switch

between severalfirstorder (orzeroorder conditional)models by conditioningon the stateofthe

FSM.

The algorithmused to designthe subband coder minimizes iterativelythe expected distor-

tion,subjectto a constrainton the complexity-constrainedaverageentropy of the stagequan-

tizers,by jointlyoptimizingthe subband encoders,decoders,and entropy coders. The design

algorithm employs the same Lagrangian parameter A in the entropy-constrainedoptimization

of allsubband quantizers,and thereforerequiresno bitallocation[2].

The encoder optimizationstepof the designalgorithmusuallyinvolvesdynamic M-search

of the multistageRSQ in each subband independently.The decoder optimizationstepconsists

of using the Ganss-Seidelalgorithm [3]to minimize iterativelythe average distortionbetween

the input and the synthesizedreproductionofallstagecodebooks in allsubbands. Sinceactual
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entropycodersare not used explicitlyin the designprocess,the entropycoder optimizationstep

isequivalentto a potentiallycomplex high orderstatisticalmodeling procedure.The multistage

residualstructuresubstantiallyreducesthe largecomplexity demands, usuallyassociatedwith

FSM statisticalmodeling,and makes exploitinghighorder statisticaldependenciesmuch easier

by producing multiresolutionapproximationsof the input subband images. However, thereare

stillmany issuesto be addressed.MultistageRSQs reduce the complexity because the output

alphabet ofthe stagequantizersistypicallyvery small(e.g.,2,3,or 4),but the complexityofa

stageentropy coderisstillexponentiallydependent on itsorder,or number ofconditioningsym-

bolsor random variables,and/or the output alphabet sizesof the stagequantizers.Moreover,

multistageRSQs alsointroduceanother dimension to the statisticalmodeling problem, which

significantlyincreasesthe number of possiblecombinations of conditioningsymbols. Finally,

many of the frequenciesofcombinations of conditioningsymbols, gathered during the training

processand used as estimatesforprobabilities,have zero values,producing empty states.This

complicatesthe encoding stagebecause a combination ofconditioningsymbols correspondingto

an empty statemay occur.This isthe so-calledempty stateproblem, a problem usuallyassoci-

ated with finitestatemachines. In [2],a complexity-constrainedstatisticalmodeling algorithm

isproposed thatattempts to simultaneouslysolvethe above problems. Using overallcomplexity

and average entropy of allstage quantizersas the criteria,the algorithm can be describedas

follows:

1. For each stage in each subband, and given a sufficiently large region of conditioning sup-

port, locate the best (in the sense of minimizing the entropy) 1st, 2nd, 3rd, ...order

statistical models;

2. Substantially reduce the stage model orders, thereby reducing the number of conditioning

states, by employing a tree structure and using the generalized BFOS algorithm;

3. Employ the well-known PNN algorithm to further reduce the number of conditioning states

for each stage statistical model (state quantization).

3 Progressive Transmission

An important advantage of the subband coder introduced in [2] is its suitability for progressive

transmission. The successive approximation nature of the subband structure results in mul-

tiresolution approximations of the input image. For example, a lowpass approximation can be

obtained by transmitting information from only the low-low frequency band. Then, the quality

of the reproduction can be successively improved by transmitting information from higher fre-

quency bands. For this progressive transmission technique to be more effective, the subbands

may have to be ordered in accordance with their perceptual importance. Whatever ordering is

used, it must be the same in both design and encoding/decoding procedures. This insures that

only previously coded symbols are required by the FSM. Fortunately, this type of progressive

transmission places no constraints on the encoding/decoding performed within the subbands.

Moreover, non-causal 1 encoding/decoding across subbands has negligible impact on performance

anyway. However, incremental SNR improvements obtained betw .ee'n progressive updates tends

ICatusality is defined in this paper in the context of operations across stages
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Figure2: (a)Illustrationofthe conditioningstructureused in previouswork and (b)nlustration

ofthe progressivetransmissionconditioningstructureused in thiswork.

to be large.In fact,decoding the low-low band alone usuallyyieldsgood quality.What we

would preferisto reconstructa low qualityinitialimage in a fractionof time,with increasing

qualityas bitsare received.

To increasethe resolutionof the progressivetransmission,we exploitthe RSQ structure,

which produces multistageapproximationsof the input image. That is,the fartherdown the

quantizationtreethe input coefficientisencoded, the better,on average, the reproduction.

Given that the image isdecomposed into N subbands and RSQs with an average number of

stagesP are used to code the subband signals,the subband coder can enablethe userto see a

progressivelyimproved image taken from a sequence of NP possiblereconstructedimages. In

general,the subband/RSQ encodes the image using one stagecodebook at a time untileither

transmissionisaborted or untilallNP stagecodebooks have been used.

To use the RSQ for progressivetransmission,the encoding and decoding processeshave to

be changed. First,the encoder must change the orderinwhich bitsaresent.Insteadof sending

allthe bitsforeach inputcoefficientineach subband allatone time,the encoder scans a partic-

ularimage subband and sends a small number of bits(which correspondto the stagecodebook

being used) for each coefficient.When encoding isrepeated for a particularcoei_clentin a

certainsubband, the encoder recallsat which stageencoding stopped and continuesencoding

from there.Of course,the decoder changes itsoperationaccordingly.Second, non-causalRSQ

encoding/decoding can badly affectthe performance inthe intermediatestages.This isbecause

we do not know when transmissionisgoing to be halted. To insurethat the qualityof the

intermediatereproductionsisthe best possiblefor the number of receivedbits,non-causalen-

coding such as dynamic M-search [4]and non-causaldecoding such as applyingthe Gauss-Seldel

algorithmto the stagecodebooks have to be abandoned. Third,sincethe subband coei_dents

are coded and transmittedin a differentorder,conditioningmust alsobe changed. Subsequent

stage symbols of previouslycoded coefficientsare no longeravailable,but non-causal"spatial

regionsof support can now be used..Figure 2 shows a graphicalillustrationof a conventional

conditioningscheme and another that supports progressivetransmission.In figure2(a),notice

that half-planesupport ispresentfor conditioningat the currentstage levelp, and full-plane

support isavailableforthe previousstagelevelp- 1. Having full-planesupport in stages1 to



p- 1 allows the coder to exploit larger spatial dependencies, which are usually stronger than

inter-stage dependencies.

4 Experimental Results

Several 512 × 512 USC database images were used for trahing. The image BOAT was not

part of the training sequence and was kept for testing. Each image was decomposed into 16

uniform subbands. To initialize the design algorithm, a multistage ILSQ is obtained for each

subband image, as described in [2]. The number of scalars in each stage codebook is set to 3.

A uniform stage codebook size was used for all RSQs in all subbands, which simplifies both

quantization and arithmetic encoding/decoding. We determined empirically that 3-scalar stage

codebooks provide the best tradeoff between resolution of progressive transmission, complexity,

and performance for the training sequence.

Since full-resolution progressive transmission was being tested with conditioning structure as

shown in Figure 2(b), dynamic M-search and joint decoding optimization were not performed.

During the statistical modeling procedure, the total number of probabilities is set to a maximum

of 512. For each state of the FSM model at each stage, only two probabilities, quantized to values

between 0 and 255, are used by each adaptive arithmetic coder. Dynamic adaptation [51 was

performed to further lower the bit rate.

The encoding/decoding complexity and memory of the fully embedded image subband coder

are relatively small. The memory required to store all codebooks for each rate-distortion point

is only 356 bytes, while that required to store the conditional probabilities is 512 bytes. Fur-

thermore, the average number of multiplies/adds required for fuU-resohtion encoding is approx-

imately 10 per input sample. Decoding requires 6 multiplies/adds.

Figure 3 shows the test image BOAT coded at (a) 0.01 bits per pixel (bpp), (b) 0.07 bpp, (c)

0.16 bpp, and (d) 0.35 bpp. Notice that even that only the first stage indices in the low-low band

were decoded in Figure 3(a), the image can still be recognized, and can be decoded rapidly.
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Figure 3: The image BOAT coded usin_ the progressive transmission SBC at (a) 0.01 bpp, (b)

0.07 bpp, (c) 0.1.6 bpp, and (d) 0.35 bpp. The PSNRs (in dB) are 21.91, 23.30, 27.26, and 32.13,

respectively.
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Abstract--High order entropy coding is a powerful
technique for exploiting high order statistical depen-
dencles. However, the exponentially high complexity

associated with such a method often discourages its
use. In this paper, an entropy-constralned residual
vector quantization method is proposed for lossless
compression of images. The method consists of first
quantizing the input image using a high order entropy-
constrained residual vector quantlzer and then coding

the residual image using a first order entropy coder.
The distortion measure used in the entropy-constralned

optimization is essentially the first order entropy of
the residual image. Experimental results show very
competitive performance.

I. INTRODUCTION

A common approach to lossless image coding is to pre-

process the data, in a way that removes Statistical depen-

dencies among the input symbols, and code those sym-

bols with an entropy coder. Individual systems differ in

their choice of statistical models for removing redundan-

cies and their choice of entropy coders, like arithmetic and

Huffman for example. Simple statistical models such as

DPCM can remove some of the dependencies but usually

are ineffective in handling high order dependencies.

High order statistical models have been proposed pre-

viously for lossless compression of binary images [1], and

were shown to be very effective. Unfortunately, they can-

not be translated efficiently to the gray-scale case. The

computational and storage demands can be prohibitive.
For example, a typical first order conditional statistical

model might require that 65535 conditional probabilities

be computed and stored. This number grows exponen-

tially with increasing model order. Compounding the

problem is the fact that many of the probability tables

cannot be populated even when large training sequences

are used, making high order entropy coding a very difficult
task.

Several methods have been proposed recently for re-

This work w_ supported by the National Science Foundation
under contract MIP-9116113 and the NASA.

ducing the complexity of these statistical models [2, 3, 4,

5]. Most employ quantization or merging principles to

reduce the number of conditioning states or tables of con-
ditional probabilities, usually leading to orders of mag-

nitude reductions in complexity while sacrificing only a.

small loss in performance. Others involve decomposition

of the original signal into binary signals, which increases

the accuracy of estimating the statistical model and thus
improves the compression performance. In this paper,
we introduce a new method that is based on both de-

composition and probability table reduction techniques.

Statistical modeling is performed through high order con-

ditional entropy-constrained residual vector quantization

(CEC-RVQ) [6, 7]. The entropy-based distortion measure
employed in the CEC-RVQ optimization coupled with the

high order entropy coding of the CEC-RVQ output result
in substantial reductions in the entropy of the residual

signal. This design framework, leads to high compression

performance relative to other competing approaches.

If. PROPOSED FRAMEWORK

The hybrid technique of quantization and entropy cod-

ing of the residual signal has been shown to yield good

compression performance [8, 9, 10]. This is due to the fact

that quantization often produces a structure where high

order statistical dependencies can be exploited. Moreover,

since the output alphabet of the quantizer can be made

smaller than that of the original signal, the complexity of

high order statistical modeling is reduced. This is espe-

cially the case when structurally constrained quantizers
are employed. In particular, the structure of the multi-

stage residual vector quantization (RVQ) used here has

been shown [11] to be very successful in providing more

accurate estimates of the statistical dependencies of the

original signal while also reducing drastically the complex-
ity of high order statistical modeling. Multistage RVQ

produces multiresolution approximations of the input sig-

nal, and allows high order statistical conditioning to be

performed between the stage sub-signals.

As shown in Figure 1, we employ a CEC-RVQ to



Figure1:Proposed CEC-RVQ lossless coder.

quantize the input signal, where the output of the stage

RVQ is then fed into a statistical-model-driven entropy

coder (EC). The high order stagestatisticalmodel isrep-

resentedby a finite-statemachine (FSM) where the state

transitionsare based on previouslycoded symbols. The

quantizedsignalisrounded tothe nearestinteger,and the

residualsignal,formed by subtractingthe rounded quan-

tiredsignalfrom the originalone, isthen coded using a

firstorder entropy coder. Empirical work has shown that

using higherorder entropy coding does not lead to signif-

icantreductionsin output entropy of the residualsignal.

In the finalstageof the encoder,the bitsemanating from

the stage entropy coders as well as the residualentropy

coder are combined together into a uniquely decodable

bitstream, which issent to the channel.

There are two important ideas,unique to thisframe-

work, thatexemplify the noveltyofthislosslessapproach.

First,sincethe overallsystem islossless,itispotentially

betterto employ the entropy of the residualsignalas a

distortionmeasure in the designof the CEC-RVQ. Using

conventionaldistortionmeasures such asthe squared error

measure does not lead to minimization of the residualen-

tropy.To elaborate,letz be the input and _ be the output

ofthe CEC-RVQ. The new distortionmeasure used inthe

design of the CEC-RVQ is d(=, _) = - log_[pr(I(= - _))],

where I(a) is the integer closest to the real a. The dis-
tortion is essentially the self-information of the integer-

converted residual signal, and is used as an estimate of the

length of the codeword that would be used to encode the

symbol I(= - _). In other words, the CEC-RVQ designed
to minimize such a distortion measure also minimizes the

entropy 1 of the residual signal.

The second idea is that only entropy is a measure of

performance. Since the distortion measure is the entropy,

the CEC-RVQ design algorithm produces an operational

enfropy-enfropycurve where each point representsa pair

ofentropies,the firstbeing the high order entropy ho of

the CEC-RVQ and the second being the entropy hr of

the residual.The high order entropy ho isobtained by

ho -"?/(hr),where 7_ isthe operationalentropy-entropy

function.Itcan be easilyshown that the function "H(hr)

iscontinuous and differentiable(exceptforsome points).

However, itisgenerallynot convex, and itsconvexityde-

pends on the source as well as the entropy measure used

to estimate the information content in the residualsig-

1This is the first-order entropy. For higher order entropies, high
order probabilities should be used in the distortion measure.

H hr)p H(hr ) • hr

I%% / // ',

O b r H

Figure 2: illustration of an operstiomd entropy-entropy curve.

nal. Fortunately,experimental work shows that for natu-

ralimages and the first-orderentropy,the function 7_(hr)

isconvex with endpoints IIo and H, as illustratedin Fig-

ure (2). In the figure,the rightendpoint H isthe first-

order entropy of the originalsignal. The leftendpoint

Ho = 7/(0)isthe high order entropy of CEC-RVQ which

resultsinperfectreconstructionafterthe CEC-RVQ out-

put isrounded to the nearestinteger.Due to the rnono-

tonicityofthe CEC-RVQ (i.e.,distortionwill,on the aver-

age,only decrease by adding RVQ stages), Ho is finite. In

other words, there is a point beyond which all of the real

components of the residual signal lie in the real interval

(-0.5,0.5). The problem at hand is to find an (7"l(hr),hr)
pair such that the function .T(hr) = 7f(hr) % h_ is mini-

mized. As shown in the figure, the minimum occurs at hi

such that H'(h'_.) = -1. As will be shown later, the CEC-

RVQ algorithm is based on a Lagrangian minimization

where A is the slope of the operational entropy-entropy

function 7_. Thus, the problem translates into designing

the EC-RVQ with corresponding Lagrangian parameter

lyingin the neighborhood of 1.

Note that _" would not necessarilyhave a minimum

at h_ if_/ were not convex. Moreover, itisimplied in

Figure 2 that Ho < H. This is not true in general,

since H depends on the source and Ho depends on the

source,quantizer,and quantizeroutput statisticalmodel.

Ifrio >_H, the minimum may be largerorequal to the en-

tropy H, and quantizationbecomes useless.However, by

using CEC-RVQ, itisobserved that Ho isusuallysignifi-

cantlysmallerthan H. Thus, CEC-RVQ has the potential

of achievingratesthat are substantiallylower than those

obtained by firstorder entropy coding the originalsignal.

HI. DESIGN AND COMPLEXITY ISSUES

The CEC-RVQ design algorithm proposed here itera-

tively minimizes the Lagrangian

J_ = E[-log2 prCI(X - :_))] + AE[£(L(JIU))],



where U is the state random variable [6], L is the high

order conditional entropy mapping, and f(L(JIU)) is the

length of the variable length codeword L(J[U). The La-

grangian parameter A controls the entropy-entropy trade-

offs and is used in the design process to locate on the op-
erational entropy-entropy curve the point where the sum

of the entropies is a minimum or close to a minimum.

In this work, a training sequence that is representative

of the source output to be encoded is used in the design
process. Let z s'be the ith k-dimensional vector taken from

the training sequence of size N. An optimal encoding op-

timization step generally requires exhaustively searching
the reproduction vector _* that minimizes the Lagrangian

- 1og2 pr(I(z i - _*)) + A(- log_ pr(j[u)), where j is the

current output of the CEC-RVQ and u E U is the current

conditioning state. This typically yields large encoding

complexity. To reduce complexity, non-exhaustive stage

searching algorithms are usually used, leading to a good

balance between complexity and encoding accuracy. In

particular, the dynamic M-search algorithm [12], which is

shown to generally perform better than the conventional

M-search algorithm, is used here to search the CEC-RVQ.

The decoder optimization step consists of using the

Gauss-Seidel algorithm [6] to iteratively minimize the av-

erage output entropy of the residual signal subject to fixed

stage encoding partitions. Suppose the CEC-RVQ con-

tains P stage VQ codebooks, each containing Np(1 _< p <

P) k-dimensional code vectors. Also, let V(jp) denote

the jpth non-causal partition cell that corresponds to the
jpth code vector in the pth stage codebook. The partition

cell V(jp) is formed of all stage.removed residual vectors

i is given by= - where

p-1 p

where j],..., j_ are the corresponding encoding decisions
for the input vector z _. Each iteration of the Gauss-Seidel

algorithm consists of sequentially replacing for each stage

partition cell the old stage code vector y(jp) with the cen-

troid vector c(jp) given by

v(./,)= arg rain Y" -]ogzpr(I(-?(./,,)-u)). (1)
UE_k . 4....4

"7'(j,)ev(j,)

The centroid vector c(jp) is very difficult (if not impos-

sible) to determine analytically. Thus, a numerical op-

timization procedure is used in this work. This further

complicates the decoder optimization, but such iterative

optimization is only performed in the design process and

therefore does not affect the encoder/decoder complexity.

The entropy coder optimization consists of simply up-

dating the finite-state machine (FSM) and the correspond-

ing state tables of conditional probabilities [6]. Only the

stage p-I stage p stage p+l

Figure 3: Illustration of • conditioning structure for CEC-RVQ.

stage high order statistical models are optimized, and no

actual entropy coders are embedded in the design loop.

This simplifies the design process, but the complexity of

the stage statistical models must still be addressed. Like

VQ, high order statistical modeling provides a way to ex-

ploit high order statistics while also requiring complexity

that is exponentially dependent on the parameters of the

model. RVQ drastically reduces the complexity of the high

order model and improves our estimates of the dependen-

cies by generating multistage approximations of the input

signal, where the output alphabets of the subspaces .are

small (e.g., 2, 3, or 4).

Complexity-constrained statistical modeling for the out-

put of the stage RVQs can be divided into three tasks. The

first task is to locate a small number r% of conditioning

symbols (or previous outputs of some stage RVQs), given

an initial region of support containing _p conditioning

symbols, such that the myth order conditional entropy is

minimized. This is illustrated in Figure 3 for the case

of image coding, where the shaded block in the middle

is the stage vector upon which conditioning is being per-

formed. A total ofm (12 in this case) neighboring blocks

is utilized for conditioning. These blocks define the spa-

tial region supporting the conditioning. The solid arrows

show these neighboring blocks at the pth stage. In ad-

dition to the spatial dimension, conditioning is based on

corresponding blocks at different stage levels, which is il-

lustrated in Figure 3 by the dashed arrows, showing these

conditioning blocks at the (p - l)th and (p q- 1)th stages.

By building a conditioning tree as described in [7] and

using the dynamic M-search algorithm, one can find the

best stage statistical models of orders 1, 2, 3, etc.

The second task to be performed is to determine the
best orders for each of the stage statistical models subject

to a constraint on overall complexity. For this purpose, a

tree with P branches is built and populated with a suffi-

ciently large number of complexity-entropy pairs in each

branch. The well-known generalized BFOS algorithm [13]
is then used to prune the tree to find the best stage or-

ders subject to a limit T1 on the number of conditional

probabilities, used here as a measure for complexity.

Since relatively high orders are usually required to

achieve a very low entropy, the complexity of the stage



mACE  VBRIDCODER

LEN* 4.27

BRIDGE' 4.30

DPCM [3} [4]
L 4.80 4.42 4.20

4.82 4.30 4.32

Table 1: Performance comparison of the hybrid lossleu coder with
vPcM,[3],and[4].

statistical models can still be high. Moreover, contextual
information is usually located in a relatively small region
of the state space. In other words, many states do not
occur, and corresponding tables of conditional probabili-
ties are not populated. Thus, the third task is to reduce
the number of states while sacrificing a minimal loss in
performance.The PNN algorithm[14]was shown to be

successfulinreducingthesizeofthestagestatisticalmodel

by oneorderofmagnitudewhilestilllimitingtheincrease

inentropyto about I%. The same approachused tolo-

catethe beststagestatisticalmodel ordersisusedhere,

where the PNN algorithmisappliedtoeachofthestage
statisticalmodels withjust-determinedorderssuch that

a new complexity-entropypairisobtainedeverytimetwo

conditioningstatesaremerged intoa new one.The BFOS

algorithmisagainappliedtoidentifythebestnumbers of

conditioningstatessubjectto a limit7"2(T_ << TI) on

thetotalnumber ofconditionalprobabilities.

IV. EXPERIMENTAL RESULTS

Severalimagesofsize512 x 512 takenfrom the USC

databasewere used to designa CEC-RVQ codebook as

describedinthe previoussection.In allcases,testim-

ageswereexcludedfromthe trainingset.The CEC-RVQ

codebookcontains12stagecodebookswithfour4x4 code

vectorsineachcodebook.Itissearchedusingthedynamic

M-search algorithm, leading to approximately 60 vector
Lagrangian calculations per input vector. The condition-
ing scheme we use is the one illustrated in Figure 3.

To locate the best orders for the stage models for a
fixed maximum number of 4096 conditional probabilities,
a balanced tree with depth 6 is constructed where the best
1, 2,...,6 conditioning stage symbols are used. After the
BFOS algorithm is employed, the number of conditioning
states is further reduced by the PNN algorithm, whose
outputs are used to populate yet another tree. Finally,
the BFOS algorithm is used again to generate the FSM
where the number of conditional probabilities is limited
to 512.

The CEC-RVQ thatyieldsthe minimum overallen-

tropyisdeterminedasdescribedpreviously,usingthetrain-
ingsequence.The correspondingsetofstagecodebooks,

mapping tablesgeneratedby thePNN algorithm,and ta-

blesof conditionalprobabilitiesare used for encoding.

Table 1 shows the entropyperformanceof the proposed

hybridcoder,DPCM, and thatoftwo of the bestloss-

less compression techniques [3, 4] on the test images LENA

and BOAT. The entropy is used as a measure so that the
comparison is fair. An actual adaptive arithmetic coder
was used to encode both the output of the stage RVQs
and the residual image, and the compression ratios were
slightly larger. Obviously, the proposed coder compares
very favorably. Even better compression performance may
be attained by udng larger vector sizes and/or exploit-
ing any statistical dependencies between the multistage

images and the residual one. Prdiminary experimental
results are encouraging further ktudy.
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A SUBBAND CODING METHOD FOR HDTV
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This paper introduces a new HDTV coder based
on motion compensation, subband coding, and high
order conditional entropy coding. The proposed coder
exploits the temporal and spatial statistical dependen-
cies inherent in the HDTV signal by using intra- and
inter-subband conditioning for coding both the motion
coordinates and the residual signal. The new frame-
work provides an easy way to control the system com-
plexity and performance, and inherently supports mul-
tiresolution transmission. Experimental results show
that the coder outperforms MPEG-2, while still main-

talning relatively low complexity.

I. INTRODUCTION

Several methods have been proposed recently for trans-

mission of HDTV [1, 2, 3, 4, 5, 6, 7]. Most employ mo-

tion compensation at one stage or another, after which the

residual between the original and predicted frames is com-

puted and encoded spatially. DCT-based spatial coders
are widely used, most notably in the MPEG standards.

However, subband coders are also becoming popular.

There are many important issues that are associated

with HDTV coding, such as control over the bit rate and

picture quality, error correction and concealment, and mul-

tiresolution capability for multisource decoding and pro-

gressive transmission applications. In this paper, we intro-

duce a new subband video coder which achieves good per-

formance with low relative complexity, but also provides

a framework where most of these issues can be easily ad-

dressed. The proposed coder employs motion estimation

and compensation independently for each subband, but

encodes the motion vectors using a high order conditional

entropy coding scheme that exploits statistical dependen-
cies between motion vectors of the same frame and suc-
cessive frames as well as between the coordinates of the

motion vectors, simultaneously. The coder also identifies

non-compensatable blocks through the use of statistically

optimized thresholding, which are then intra-frame coded.
The video coder is describecl next. This is fol}owed by a

discussion of practical design issues. Section 4 presents

This work was supported by the NatiomO Science Foundmtion
under contract MIP-911flll3 m_ndthe National Aeronautics and
Space Administration.

experimental results which compare the performance and

complexity of the coder with that of MPEG-2.

H. THE VIDEO CODER

First, consider a conventional subband video coder. In

the parlance of MPEG, the frames that are coded spatially

are called I frames. Those that are forward-predicted are
called P frames, and those that are forward- and backward-

predicted are called B frames. The sequence of video

frames is first grouped into blocks of N frames, where

the first frame (or I frame) is coded using an intra-frame

subband coder, and the other N- 1 frames (or P frames)

are predicted using motion estimation and compensation,

and the residual frames are coded using another subband
coder. In this work, no B frames are used. At the receiver,
each video frame is constructed from motion information

(if applicable) and the coded residual frame.

There are two important problems associated with the

above coder. First, motion compensation using the block

matching algorithm with a typical block size of 16 x 16

and search range of-16 -to- +16 in each dimension is

usually computationally intensive. This problem becomes

even worse in HDTV coding because both block sizes and

search areas have to be somewhat larger to achieve good

performance. Second, due to the block matching algo-

rithm, blockiness frequently appears in the residual frame,

which introdaces artificialhigh frequencies. To solve these

two problems, we apply the block matching algorithm to

each of the subbands. Figure 1 shows a block diagram of

the proposed subband coder and Figure 2 shows the struc-

ture of the RVQ coder. Each frame is first decomposed

into subbands using a tree-structured IIR analysis filter

bank. The filter bank .is based on two-band decomposi-
tious, which employ allpass polyphase separable IIR filters

[8]. A full-search block matching algorithm (BMA) using

the mean absolute distance (MAD) is used to estimate the

motion vectors.. Since the BMA does not necessarily pro-

duce the true motion vectors, we employ a thresholding

technique for improving the rate-distortion performance.

Let dmi_ be the minimum MAD associated with a block

to be coded. Also, let T be a threshold, which is a large

positive number empirically determined from the statis-
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tics of the subband being coded. If d,_,_ > T, then the

block is likely not compensatable. Thus, both the origi-
nal block and the residual block, obtained by subtracting
the motion compensated predicted block from the original
one, are coded using the intra-band and residual coders,
respectively, and the one leading to better rate-distortion
performance is chosen (as will be described shortly). A
special symbol, which can be coded as part of the motion
information, is sent to the decoder indicating the type of

coding used.

In many conventional HDTV subband coders as well

as in MPEG, differential entropy coding of motion vec-
tors is employed. Since motion vectors are usually slowly
varying, the motion bit rate can be further reduced by
exploiting dependencies not only between previous mo-
tion vectors within and across the subbands but also be-

tween the vector coordinates. For this purpose, we em-
ploy a high order conditional entropy coder that is based
on finite state machine (FSM) modeling. More specif-
ically, let (Xn,,,,Yn,m) be the pair of random variables
representing the current horizontal and vertical motion
displacements in the current subband (n, m) in frame n.
Also, let (U,,m, Vn,m) be the pair of state random vari-
ables with realizations un.,n - {0, 1,..., S_n,m}and vn,rn --

{0,1,..., "_n,,n}, which we associate with X,,,n and Y,,m,

respectively. Each state u_,m is given by

Un,m Sn,m, • • • s sn,rr; J,

and each state vn,m is given by

0 1 Ma.m 0 1 N,,.,_
where Sn,m, Sn,m,..., Sn,m 8,ud _n,m,fn,m,... ,_n,m are

previously coded conditioning symbols. The mappings

Fn,m and Gn,,n are generally many-to-one mappings that
convert combinations of realisations of the conditioning
symbols to a particular state. Assuming that Xn,m is en-
tropy coded first, the conditioning symbols for the FSM
model associated with Xn,m are selected from a region
composed of symbols located in all previously coded sub-
bands (i.e., where motion vectors were already coded) in
both frames n and n - 1. When Yn,m is being coded, the
horizontal displacements in the same subband can also be
included in the conditioning region.

Statistical modeling for entropy coding the motion vec-
tors consists of first selecting, for each subband (n,m),
Mn,m (N.,m) conditioning symbols for Xn,,. (Yn,m), and
then finding mappings Fn,m and G,_,rnsuch that the con-
ditional entropies H(Xn,rnlUn,rn) and //(Xn,,nlUn,rn) are
minimized subject to a limit on complexity. The total
number of probabilities that must be computed and stored
is used here as a measure of complexity. The tree-based al-

gorithms described in [9] are used to find the best values of
Mn,._ and N,_,,n subject to a limit C1 on the total number
of probabilities. The PNN algorithm [10], in conjunction
with the generalized BFOS algorithm [11], is then used to

construct mapping tables that represent F,_,rn and G_,,n
subject to another limit C2 (C2 << C1) on the number of
probabilities.

The intra-band (I-subband) and residual (P-subband)
coders are multistage residual vectors quantisers (RVQs)
followed with high order conditional statistical models,
which are optimized to the intra-band and residual band
statistics, respectively. Multistage RVQs provide an easy
way to control the complexity-performance tradeoffs, and
allow efficient high order statistical modeling. We restrict
the number of code vectors per stage to be 2, which sim-
plifies both statistical modeling and entropy coding used
in this work. This also provides the ]_ghest resolution in

a progressive transmission environment.

The same statistical modeling algorithm used for en-
tropy coding the motion vectors is also used for entropy
coding of the output of the RVQs. Both the motion vec-
tors and the output of the RVQs are eventually coded
using adaptive binary arithmetic coders (BACs) [12, 13].

These coders are very easy to adapt and require small
complexity.



ELI. PRACTICAL DESIGN ISSUES

To achieve the lowest bit rate, the statistical models

used to entropy code the motion vectors should be gen-
erated on-line. However, this requires a two-pass process

where statistics are generated in the first pass, and the

statistical modeling algorithm described above is used to

generate the conditional probabilities. These probabilities
must then be sent to the BAC decoders so that they can

track the corresponding encoders. In most cases: this re-

quires a large complexity. Moreover, even by restricting

the number of states to be relatively small (such as 8), the
side information can be excessive. Therefore, we choose-

to initialize the encoder with a generic statistical model,

which we generate using a training HDTV sequence, and
then employ dynamic adaptation [12] to track the local
statistics of the motion flow.

For both the I-subbands and P-subbands, the multi-

stageRVQs and associatedstatisticalmodels are designed

jointlyusing an entropy and complexity-constrainedalgo-

rithm,which isdescribedin [9,14].The design algorithm

iterativelyminimizes the expected distortionE{d(X, X)}

subjectto a constrainton the overallentropy of the sta-

tisticalmodels. The algorithm isbased on a Lagrangian

minimization and employs a Lagrangian parameter A to

controlthe rate-distortiontradeoffs.To substantiallyre-

duce the complexity of the design algorithm,only sepa-

ratesubband encoders and decoders are used. However,

the RVQ stageencoders ineach subband are jointlyopti-

mized through dynamic M-search, the decoders arejointly

optimized using the Gauss-Seidelalgorithm.

The most important part of the design algorithm is

the encoding procedure, where eitheran intra-frameor

inter-framesubband coder must be chosen for a particu-
i

larblock.Suppose we want to encode a block B,_,,_ofsize

L_,m usingthe proposed l-subband and P-subband coders

with Lagrangian parameters (or qualityfactors)AI and

Ap, respectively.The BMA algorithm isfirstapplied,and

the minimum MAD dm_,_iscomputed. Ifd,,_,_< T, then

the correspondingmotion vectorisencoded usingthe BAC

specifiedby the currentstate,and the residualblock is

quantized using the P-subband (residual)RVQ. The out-

put ofeach RVQ stage isencoded with a separate entropy

coder composed of a FSM statisticalmodel and a set of

BACs, each specifieduniquely by a state. Ifdrain_> T,
then the block isboth I-subband and P-subband coded.

Let P_ = -log2 p(z_lu _) and P_ = -logs p(_lv _) be esti-

mates of the number of bits required to code the horizontal

and vertical coordinates of the motion vector, respectively.
Also, let dp be the distortion and Rp be the rate that

compose the minimum Lagrangian Jp =dp + ApRp as-

sociatedwith coding the residualblock. Assuming that

Jl - dl + AzRI isthe minimum Lagrangian associated

with coding the originalblock,then the I-subband coding

Figure 3: The ll4th h'sme of the sequence BRITS

method isselectedif

The proposed coder has many practical advantages,

due to both the subband structure and the multistage

structure of RVQ. For example, multiresolution transmis-

sion can be easily implemented in such a framework. An-

other example is error correction, where the more probable

of the two stage code vectors is selected if an uncorrectable

error is detected. Since each stage code vector represents
only a small part of the coded vector, this should not sig-

nificantly affect the reconstruction or the FSM statistical
models.

IV. EXPERIMENTAL RESULTS

' The image shown in Figure 3 isframe number 114 of

the testsequence BRITS, which we encode using both the

proposed coder and MPEG-2. The frame sizeis720x 1280.

The originalRGB colorsequence with 8bits/pixelrequires

approx 1.3 Gbs. The MPEG-2 software we used resides

on flp.netcom.com:/pub/cfoggfmpeg2 [15].

In our experiments, each frame is decomposed into 64

uniform subbands, but more than half of the subbands
are not coded. This is determined based on initial rate-

distortion tradeoffs [9]. The BMA algorithm used in our

experiments employs a block size of 2 x 2 and a search
area of -2 -to- -]-2 in each dimension. Motion estima-

tion is performed, and is done only for the Y luminance

component and the estimated motion vector field is sub-

sequently used for the motion compensation of U and V

chrominance signals. A high order conditional entropy

coder is designed for the motion vector coordinates, and
one I-subband coder and one P-subband coder with vector

size of 2 x 2 are designed for the each of the YUV com-

ponents. We set-the maximum allowed numbers of condi-

tional probabilities for the motion entropy coder and the

I-subband and P-subband entropy coders to C1 -- 4094

and C_ - 512. The BACs used employ a skew factor
between 1 and 256.
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For each rate-distortion point, the total memory re-

quired to store both the I-subband and P-subband RVQ

codebooks and associated tables of conditional entropy

codes is approximately 4.6 kilobytes. Moreover, only 512

bytes are required by the motion entropy coder. For anal-

ysis,quantization using dynamic M-search, and BAC en-

coding, approximately 27 multiplies and 32 adds per pixel

are required. Only 3 multiplies and 14 adds are required

for BAC decoding, inverse quantization, and synthesis.

Not only are the encoding complexity and memory rela-

tivelysmall, but the performance isalsogood. Figure 4 (a)

shows the average bit per pixe] and Figure 4 (b) shows the

PSNR result of our coder in comparison with the MPEG-

2 standaxd for 10 frames of the luminance component of

the color test video sequence BRITS. The average bit rate

is approximately 18.0 Mbits/sec and the average PSNR

is 34.75 dB for the proposed subband coder and 33.70

dB for MPEG-2. As is shown in the figure,the proposed

coder clearly outperforms MPEG-2. Moreover, although

MPEG-2 requires lessencoding complexity and memory,

the complexity of our subband coder are stillreasonable.
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ABSTRACT

A recently introduced iterative complexity- and entropy-constrained subband quantization design algorithm is

generalized and applied to medical image compression. In particular, the corresponding subband coder is used to
encode computed tomography (CT) axial slice head images, where statistical dependencies between neighboring
image subbands are exploited. Inter-slice conditioning is also employed for further improvements in compression
performance. The subband coder features many advantages such as relatively low complexity and operation over

a very wide range of bit rates. Experimental results demonstrate that the performance of the new subband coder
is relatively good, both objectively and subjectively.

1 INTRODUCTION

Subband image coding of 8-bit/pixel natural images has been studied extensively in the literature. 1 Common
to all subband image coding systems is the decomposition of the input image into subband images using a two-
dimensional, mostly separable, filter bank. The resulting subband images are then quantized and entropy coded
separately. Since the subband images typically have different statistical properties, a bit allocation algorithm is
usually used to distribute bits among the subbands.

The subband image coder proposed in references 2,s is different in that the design algorithm optimizes the
subband quantizers and associated entropy coders jointly within and across the subbands in a complexity- and

entropy-constrained framework. Advantages of the design algorithm are that it provides much greater control on
the complexity-performance tradeoffs by using multistage residual vector quantizers, 4,s and that no bit allocation



algorithmisrequired.Thiscoderworksverywellforquasi-stationarysignalssuchasmost naturalimages.Itcan

be designedto match theglobalstatisticsofa classofimagesby usinga representativetrainingsequence,and

can be adaptedto localstatisticsthatarespecifictoindividualimagesthroughthe use ofadaptivearithmetic

coding.e'7

Likemany naturalimages,medicalimagesthatareacquiredfrom thesame anatomicalsectionusingthesame

imagingmodalityarealsoquasi-stationary.A specificclassofimages,suchascomputed tomography (CT) axial

slicehead images,featuressimilarglobalstructuralappearancesdue to thesimilarityinanatomicaland tissue

structuresamong differentpatients.On theotherhand,anomaliessuchaspathologiesorimage artifacts,different

densitytissues,and differentimagingconditions,produceimagepatternsthatarenotpartofthetrainingsequence.

Inmedicalimaging,some oftheselocalstatisticsrepresentverycriticalinformation,and failingtoreproducesuch
uniquepatternscan significantlyimpairtheusefulnessofthecompressedmedicalimage.

The problem of subband coding medical images using the coder proposed in references _'3 is addressed in this
paper. Although there are many similarities between natural and medical images, the problem of subband coding
medical images is very different. Medical images are obtained from a variety of devices, and the images produced
have different characteristics (e.g. dynamic range, spatial resolution) as well as distinct statistical dependencies.
Performance can be improved by designing the filters, decomposition structures, quantizers, and entropy coders
differently. For example, medical images contain a significant amount of both high and low frequency information.
Thus, uniform decompositions fair better than the octave-band (or wavelet) decomposition frequently used in
natural image subband coding. Moreover, a higher degree of fidelity is required in the compressed-decompressed
images. Experimental work s shows that the choice of filters and filter design parameters has little or no effect on
the reproduction quality in the low bit rate range. However, as will be discussed in this paper, filters do affect the
subband coder's performance both objectively and subjectively in the high bit rate (high fidelity) range. Another
problem associated with high fidelity subband coding is the large complexity usually required by the quantizers
and corresponding entropy coders. Fortunately, since the proposed subband coder employs multistage residual
vector quantizers, the complexity associated with both quantization and entropy coding is still relatively low.

The subband coder described in references 2'3 exploits both statistical intra-band and inter-band dependencies

within an image simultaneously, mainly through complexity-constrained high order conditional entropy coding.
In this work, inter-band dependencies both within a slice image and between slice images are exploited, resulting
in a 5-10 % improvement in compression-complexity performance for the same reproduction quality. Next, we
provide a brief description of the coder's components. This is followed by a discussion of design and complexity
issues. This paper concludes with a discussion of the application of the subband coder to medical images and a
presentation of some CT Head image coding experimental results.

2 THE SUBBAND CODER

Figure 1 shows the block diagram of the subband encoder used in this work. As is the case in conventional
subband coding, the input image is first decomposed into M subband images using an analysis transformation.
In this work, we employ a uniform tree-structured decomposition which is based on 2-band exact reconstruction
filter banks. Each subband image is then encoded using a sequence of P,n (1 _< m < M) residual vector quan-
tization (RVQ) fixed length encoders. Multistage RVQ is instrumental in drastically reducing the complexity of
encoding/decoding as well as entropy coding, while still maintaining good rate-distortion performance. Advan-
tages of multistage RVQs will be described in the following sections. Although encoding optimality can generally
be achieved through exhaustive searching of the RVQ stage codebooks in all subbands (i.e. embedding the syn-
thesis transformation in the encoding procedure), experiments have shown that dynamic M-search g of the stage
codebooks in each subband separately usually leads to the best complexity/performance tradeoffs.

The outputsymbolofeachofthestagevectorquantizersisfedintoan entropycoderdrivenby a highorder
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stage statistical model that is governed by a finite state machine (FSM). The FSM allows the statistical model to
utilize information about previously coded stage vectors. A nonlinear function F given by u = F(sl, s2,..., an),

where sl, s_,..., sn are n conditioning symbols, or previous outputs of particular fixed-length RVQ stage encoders,

is used here to determine the conditioning state u. As will be described in the next section, F is a many-to-one
function that is represented by a table mapping each combination of realizations of conditioning random variables

into a conditioning state. Since only previously coded symbols are used by the FSM, no side information is

necessary and the decoder can track the state of the encoder by only storing the same table. Finally, the output

bits of the entropy coders are combined together and sent to the channel.

3 DESIGN AND IMPLEMENTATION ISSUES

The algorithm used to design the subband coder minimises iteratively the expected distortion subject to a
constraint on the complexity-constrained high order conditional entropy of the stage vector quantizers (VQs).

The popular squared error measure is used here as the distortion measure. This design algorithm is based on a

Lagrangian minimization, and is a generalization of entropy-constrained algorithms described in. I°,11's Details

of the join_ optimality conditions used in the development of the algorithm and convergence issues are discussed
elsewhere .3

Given a Lagrangian parameter, ,k, which is chosen based on the overall rate and distortion of the subband

system (i.e. no bit allocation algorithm is required), the entropy-constrained joint subband quantization algorithm
consists of three optimization steps. The encoder optimization step involves exhaustively searching all RVQ stage

codebooks, a task which requires a huge computational load. A large reduction in complexity can be achieved by

using dynamic M-search. This results in only a small loss of performance. The decoder optimization step consists

of using the Gauss-Seidel algorithm 5 to minimize iteratively the average distortion between the input and the

synthesized reproduction of all stage codebooks in all subbands. The complexity can be drastically reduced by,

for example, grouping neighboring stage codebooks in neighboring subbands and jointly optimizing each group

independently. This typically results in less than a 0.10 dB loss in signal-to-noise (SNR) performance.

Since actual entropy coders are not used explicitly in the design process, the entropy coder optimization step

is equivalent to a high order statistical modeling procedure. In terms of complexity (i.e. computational load

and memory requirements), high order statistical modeling is potentially the most demanding task of the design

algorithm. However, using the multistage residual structure not only substantially reduces the large complexity

demands, usually associated with high order conditional entropy coding, but also makes exploiting high order

statistical dependencies much easier by producing multiresolution approximations of the input subband images.

However, there are still many issues to be addressed. Multistage RVQs reduce the complexity because the output

alphabet of the stage quantizers is typically very small (e.g., 2, 3, or 4), but the complexity of a stage entropy

coder is still exponentially dependent on its order (number of conditioning symbols or random variables) and/or

the output alphabet sizes of the stage quantizers. Moreover, multistage RVQs also introduce another dimension to

the statistical modeling problem, which significantly increases the number of possible combinations of conditioning

symbols. Finally, many of the frequencies of combinations of conditioning symbols, gathered during the training

process and used as estimates for probabilities, have zero values, producing empty states. This complicates the

encoding stage because a combination of conditioning symbols corresponding to an empty state may occur. This

is the so-called empty state problem, a problem usually associated with finite state machines.

In reference, 2 a complexity-constrained statistical modeling algorithm is proposed that attempts to simultane-

ously solve the above problems. To help illustrate the algorithm, Figure 2 shows the inter-stage, inter-band, and

intra-band conditioning scheme employed in this work. Each image shown in the figure is a multistage approxi-

mation of a particular slice image. Note that statistical dependencies both within and across slice images can be

exploited. For each stage (m, p) in each subband m, a 5-dimensional initial region of support "i_rn,p containing

a sufficiently large number Rm,p of conditioning symbols is first chosen. Then, the nm_, nm,p << P_,p, con-
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Figure 2: Inter-stage, inter-band, and intra-band conditioning scheme within an image sequence.



ditioningsymbols sl,...,sn-,, that lead to the smallestnm,pth order conditionalentropy H(Jm,p]sl,...,s'_',,)

are locatedby building a specialtreeand using the dynamic M-search algorithm.

The next step of the algorithm isto find ordersof allstage statisticalmodels such that the average entropy

in allsubbands given a fixedlevelof complexity,expressed here in terms oftotalnumber of probabilitiesto be

computed/stored, isminimized. The processdescribedabove isrepeated foreach stage(m, p) and many valuesof

rim,p,producing, let'ssay,Lm,p complexity-entropypairsper stage.For each complexity-entropypair,complexity

isgiven by Afm,p = Sm,pNm,p, where Sm,p isthe number of allcombinations of realizationsofthe conditioning

symbols and Nm,p is the output alphabet size of stage ivin band m. Once allcomplexity-entropy pairs are

obtained,a treewith _-_--IPm branches,where Pm isthe number of stagecodebooks inthe ruth subband, can

be built.Each branch of the treeisa unary tree oflength L,n,p,and each node representsa complexity-entropy

pair.The generalizedBFOS algorithmz2isthen used to minimize the averageentropy subjectto a constraintAll

on the totalnumber ofconditionalprobabilities.

The FSM statisticalmodel for each stage (m, p) employs a mapping F to determine the stategiven nm,p

availableconditioningsymbols. This mapping F isone-to-one and isactuallygiven by a table that contains

the numbers 0,I,...,S_,p - I,representingeach of the possiblecombinations. Up to thispoint,the number of

conditioningstatesforeach ofthe stagesistypicallylarge.Many ofthe corresponding tablesofprobabilitiesmay

stillbe empty afterthe designiscompleted, therebyoccupying memory which can usuallybe more ei_cientlyused.

Moreover, as mentioned earlier,these empty tablesmay be visitedduring actualencoding even though they were

never visitedduring the designprocess.Therefore,the laststep of the algorithm istofurtherreduce the number

of conditioningstatesthrough quantization.In thiswork, the PNN algorithm2ahas been shown to be successful

in reducing the number of statesby orders of magnitude while stillbounding the lossin entropy performance

to about 1%. The PNN algorithm firstmerges allof the empty stateswith the leastprobable stateinto one

conditioningstate,thereby completely removing empty states.Then, the two conditioningstatesresultingin

the lowestincreasein entropy (when merged) are combined intoone conditioningstate,and so on untilonly one

state,which representsone table offirstorder probabilities,isobtained. Since the objectiveisto minimize the

complexity-constrainedaverage entropy, the BFOS algorithm isagain used, where a much smaller complexity

valueA/'2isthe constraintor criterion.

In the contextofmedical image compression,quantizationofthe conditioningstateshas two important advan-

tages.First,the stagestatisticalmodel orderscan be allowedto grow torelativelylargenumbers, which generally

resultsin significantlylower average entropy because most medical images featurehigh order globalstatistical

dependencies. This alsoincursa small additionalenoding/decoding complexity,sinceonly largermapping tables

have to be stored/accessed.Second, the merging processimproves the robustnessof the subband coder because

only globalstatisticsare carriedthrough, and the possibilityof a strong mismatch between individualmedical

images and the subband coder islesslikely.

4 EXPERIMENTAL RESULTS

A total of 90 axial slice CT head images with no abnormal findings were used for training and testing. Images

were selected retrospectively from studies of 10 patients undergoing scans as a part of their clinical care. A General

Electric (Wankasha, Wi) Hi-Lite Advantage CT scanner was used to produce all images which were either 3 mm

(posterior fossa, 120 kVp, 320 mAs) or 5 mm (mid-brain, 120kVp, 240 mAs) thick slices. All images were of size

512 x 512 with 12 bit/pixel amplitude resolution. No special image processing or reconstruction algorithms were

applied. Each image was extracted from the CT scanner's proprietary database using software tools supplied

by the manufacturer. Subsequently, the proprietary header information was removed and the raw images were

stored with 16-bit amplitude precision. A set of 12 slice images was kept for testing, and was not used as part of

the training sequence.



Twoexperimentswereperformed.Thefirst investigatedtheperformanceofthespatialsubbandcoder,while
thesecondconsideredexploitingbothspatialandinter-slicedependencieswithintheCTimagesequence. In both

experiments, each slice image was first fed into a 2devel balanced tree structured filter bank, producing 16 image

subbands. The All allpass polyphase exact reconstruction IIR filters 14 were used in our simulations. Many other

filters, such as the Johnston 16-tap and 32-tap QMFs is and the Daubechies 32-tap wavelet filters,ISwere tested

and were found to be inappropriate. The SNR reconstruction performance of these filters for the test CT images

did not exceed 52 dB even when quantization was not performed. This is unsatisfactory in light of the fact that

the medical community demands a SNR reconstruction performance that is usually 50 dB or higher.

In this work, we employ a vector size of 1 x 1 (scalar quantizer). Although k-dimensional vector quantizers
are potentially better than scalar quantizers, their complexity is very large. Thus we found scalar quantizers to

be more appropriate, particularly considering the high rates of operation. To initialize the design.algorithm, a

multistage residual scalar quantizer (RSQ) is obtained for each subband image, as described in reference, s The

number of scalars in each RSQ stage codebook is set to 3. Non-uniform stage codebook sizes were considered, but

no significant improvement in rate-distortion performance was obtained. Furthermore, choosing a uniform stage

codebook size for all RSQs in all subbands simplifies both quantization and arithmetic encoding/decoding. We

have also tried stage codebooks of sizes 2, 3, 4, 5,... and have determined that 3-scalar stage codebooks provide

the best complexity-performance tradeoffs for the training CT sequence.

In both experiments, dynamic M-search with a fixed threshold of 10 was used in the encoder optimization.

Moreover, a joint decoder optimization between stages only is used in both cases. In other words, no joint

optimization between subband decoders is performed. During the statistical modeling procedure, the value of A/'I

was set to 8192, and the value of A/'2 was set to 1024. For each state of the FSM model at stage (rn, p), only

two probabilities, quantized to values between 1 and 256, are needed by each adaptive arithmetic coder. Since
the probabilities are constrained to be powers of 2, no multiplications are necessary in the implementation of

the arithmetic encoders/decoders. Dynamic adaptation 17 was performed to further lower the bit rate. Although

good performance high rate coders typically require a large design complexity, such is not the case in the first
experiment. About 12 CPU hours on a Sparc 10 Sun Station were required to design subband coders operating

at rates between 0.80 and 2.0 bpp. However, the design complexity in the second experiment is relatively large.

More specifically, more than two days in CPU time were required to design the same number of codebooks and

corresponding entropy coders. This is due to the fact that inter-slice conditioning requires that a much larger

region of support be used, which complicates statistical modeling.

The encoding/decoding complexity and memory of the CT image subband coder are relatively small. The

memory required to store all codebooks for each rate-distortion point is only 1152 bytes, while that required to

store the conditional probabilities is approximately 1024 bytes. Furthermore, the average number of operations

(multiplies/adds) required for encoding is 14.64 per input sample. Decoding requires 10 multiplies/adds. By

placing some constraints on the coder, encoding/decoding can also be implemented without multiplications.
However, such constraints also affect the rate-distortion performance. Full evaluation of a multiplication-free

implementation of this subband coder for medical image compression is the subject of further research.

The objective quality of the reconstructed CT slice images is very good. Table 1 shows rates and SNRs for

all 12 test CT slice images for average rates of 2.00, 1.50, 1.0 and 0.80 bpp, corresponding to compression ratios

of 6 : 1, 8 : 1, 12 : 1, and 15 : 1, respectively. The SNRis defined by

- (1)
SNR=-101ogl0 _._N=1 M • •E;=, -

where N x M is the nurdber of samples in the image, z(i, j) and $(i, 3.') represent the original andthe coded value

(respectively) of the (i,j)th sample, and # is the mean of zCi, j). Figure 3(a) shows the original slice image _ 11.
Figure 3(b) shows the residual image formed by taking the absolute difference between the original image and the

reconstructed one at a bit rate of 0.73 bpp. Note that the intensities of the residual image have been magnified

by a factor of 16. Finally, Table 2 compares the bit rates and SNRs of the first and second experiments for the



SLICE #I

SLICE #2

SLICE #3

SLICE #4

SLICE #5

SLICE #6

SLICE #7

SLICE #8

SLICE #9

SLICE #I0

SLICE # 11

SLICE #12

6:1

BR SNR

2.16 56.83

2.12 57.06

2.09 57.11

2.11 56.97

1.99 57.27

2.01 57.i3

2.03 57.18

2.01 57.31

1.94 57.35

1.89 57.33

1.84 57.36

1.84 57.13

8:1

BR SNR

1.75 52.89

1.61 52.99

1.67 53.05

1.59 52.89

i.42 53.00

1.46 52.92

1.48 52.94

1.45 53.03

1.39 53.10

1.42 53.03

1.38 53.06

1.33 52.88

12:1

BR SNR

1.13 48.75

1.12 48.64

1.16 48.77

1.05 48.61

0.98 48.90

1.01 48.83

1.02 48.82

0.95 48.89

1.02 48.86

0.98 48.84

0.93 48.89

0.90 48.93

]5:1

BR SNR

0.80 46.35

0.92 46.50

0.89 46.41

0.83 46.24

0.79 4'6.62

0.80 46.59

0.82 46.54

0.80 46.62

0.77 46.61

0.74 46.58

0.73 46.65

0.71 46.

Table 1: Bit rate (BR) in bits per pixel (bpp) and signal-to-noise ratio (SNR) in decibels (dB) for the 13 slice

images used in the first experiment at compression ratios of 6:1, 8:1, 12:1, and 15:1.

Non-inter-slice

Inter_slice

6:1 15:1

BR SNR BR SNR

1.84 57.36 0.73 46.65

1.71 57.29 0.68 46.68

Table 2: Bit rate (BR) in bits per pixel (bpp) and signal-to-noise ratio (SNR) in decibels (dB) for the slice image
#11 at compression ratios of 6:1 and 15:1.



slice image # 11 at the two 6 : 1 and 15 : 1 compression ratios. Looking at Table 2, one can see that inter-slice
conditioning resulted in a 7 % decrease in bit rate roughly for approximately the same objective quality.

Compressed and reconstructed images of the non-inter-slice conditioning experiment were also viewed by an
experienced radiologist for his impressions. Viewing was performed in a low-light environment. Images were
displayed on an Image Systems M21PMAX 1280 x 1024 display using a Dome MD2kEISA display controller on
a DELL Omniplex Pentium personal computer running MS-DOS 6.21 and an image viewing software customized
from DOME's software library. The same series of 12 images, each compressed at 6:1, 8:1 and 12:1, were used.
For each image viewing, the original image and a single compressed-reconstructed image were displayed together.
All images compressed at 6:1 were viewed first, followed by the 8:1 and the 12:1 images, respectively. The
radiologist was allowed to adjust window and level settings and no time constraints were imposed. The radiologist's
impression was solicited. The radiologist reported no noticeable difference between the original image and the 6:1
or 8:1 compressed-reconstructed images. For two of the twelve 12:1 compressed-reconstructed images the observer
noted slight enhancement of the high frequency component (noise) of the compressed-reconstructed image.

5 CONCLUSIONS

The results of the preliminary viewing of the compressed-reconstructed images by a radiologist were encour-
aging. We are currently conducting more rigorous observer performance tests to determine objectively the per-
formance of radiologists using the compressed-reconstructed images. The computational complexity and memory
requirements make this coder a suitable candidate for implementation in real-time hardware.
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A Robust Model-Based Coding Technique for Ultrasound Video *

Alen Docef and Mark J. T. Smith

Georgia Institute of Technology, School of Electrical and Computer Engineering

Atlanta, Georgia 30332-0250

ABSTRACT

This paper introduces a new approach to coding ultrasound video, the intended application being very low bit rate
coding for transmission over low cost phone lines. The method exploits both the characteristic noise and the quasi- periodic
nature of the signal. Data compression ratios between 250:1 and 1000:1 are shown to be possible, which is sufficient for
transmission over ISDN and conventional phone lines. Preliminary results show this approach to be promising for remote
ultrasound examinations.

Keywords: telemedicine, ultrasound, video coding, model-based coding, subband coding.

1 INTRODUCTION

Ultrasound video is a very cost effective diagnostic modality, and thus is widely used throughout this country and
the world. Although ultrasound equipment is often available in rural and remote corners of the country, specialists to
interpret data are typically in short supply in these locations. With the interest and support in telemedicine, the notion of
having specialists perform ultrasound examinations at remote locations via electronic data exchange is very attractive. In
the absence of channel bandwidth constraints, such an approach is straightforward, with high potential benefits related to
providing immediate care and lowering overall expense. Unfortunately, many of these remote locations do not have access
to or cannot afford to use high capacity channels (such as TI lines) to interface with large well-staffed urban medical centers

where such specialists reside.

In the presence of channel bandwidth constraints, this approach is encumbered by the large volume of data associated
with digital video. Effective compression of the ultrasound prior to transmission will allow this data transfer to occur. The
key is to achieve sufficient compression with acceptable reconstruction quality at rates compatible with telephone and ISDN
lines. In this work we consider ulwasound video of the heart, where the remote examination involves a specialist at a remote
location guiding the attending pra_'titionerby telephone. A critical part of this examination is obtaining proper positioning
of the ultrasound probe, so that a diagnosis can be made. The transmitted video quality standards for positioning purposes
are clearly not as stringent as those for diagnosis, l.f positioning quality can be achieved, then higher quality video can be
transmitted in a non-real time mode for diagnosis. Of course we hope to eventually be able to transmit diagnostic quality
ultrasound in real time, butthis not yet in reach."Regardless, the approach outlined above is a marked improvement in terms

of accuracy and speed over sending video tapes" by courier.

"This work was supported in part by the National Science Foundation under contract MIP-9116113 and by NASA.



The target goals imply compression ratios in the range from 250:I to 1000:I. An obvious first line of attack on this
problem is to investigate to what extent spatial and temporal sampling (i.e. frame size and flame rate) can be decimated
without significantly impairing the quality. This has the advantage of being attractive computationally. Based on feedback
from the Medical College of Georgia, a 4:1 reduction in spatial resolution to a size of 256 x 256 was judged to be acceptable.
However, the full 30 f/s frame rate was recommended, particularly for pediatric cardiology where the heart rates are often
very high.

Conventional coding methods such as H.261 and MPEG are not well suited to ultrasound video. The data rates tend to

be too high and they have difficulty representing the high frequency information in the input. Model-based methods on the
other hand are known for high compression ratios but suffer typically from variegated performance behavior over a wide
variety of inputs.

In this paper, we intrc_luce a model-based method that provides both high compression and robust behavior. To meet the
difficult compression requirements imposed by the telephone bandwidth, it is important to identify and exploit all available
properties of the signal and preserve with fidelity those parts of the signal that are important for expert analysis. In the
case of ultrasound video in cardiology, for example, cardiologists must be able to see the shape of the walls, the shape and
thickness of the valves and the tissue texture. By taking into account the nature of the noise/texture associated with the
ultrasound images and identifying the important components (wall boundaries, valves, etc.), we formulated a visual model
that can be used for very low bit rate coding.

2 SYSTEM DESCRIPTION

The components of the proposed coding system are outlined in Figure 1. First, each input frame =n,ld is decomposed
nonlinearly into two components: a lowpass component, which is denoted by I,_; and a highpass or texture component,

tn,i_, where n is the frame number, i is the row number, and j is the column number. The decomposition is based on a
signal model and is optimized empirically such that the iowpass component contains most of the information needed for
diagnosis, such as the contours of walls and valves. The highpass component contains information about the texture of the
tissue being examined, The non-linear subband decomposition (upon which we elaborate later) is shown as the first block
in Figure 1. After the decomposition, the iowpass component is then decimated in i and j to the Nyquist rate. Signal coding
is then performed using an optimized subband coding method recently developed in the digital signal processing laboratory
at Georgia Tech. I Some details of this method are presented in a later section.

The lower branch of the system contains the texture information. It is decimated in the temporal domain and encoded
using an in-house version of entropy-constrained residual scalar quantizafion. 2 The two encoded components are then time-
multiplexed into the narrowband telephone channel for transmission to the remote location. At the receiver, the channel
signals are demultiplexed and the individual components are decoded. The iowpass component is then upsarapled and
interpolated spatially to restore it to is proper size and the texture component is upsampled temporally to the original frame
rate. After the components are restored, they are combined the 2-D nonlinear synthesis section to form the reconstructed
video. In the next sections, we take a closer look at the individual operations shown in the block diagram in Figure 1.

3 NONLINEAR SUBBAND DECOMPOSITION

Two particular characteristics of the ultrasound vid_ signal support the idea of using the model-based decomposition.
First, ira static tissue is examined, the ultrasound image can be interpreted as the product of a luminance lowpass component,
representing the intensity of the ultrasonic wave in the vicinity of the examined tissue, and a constant reflectance component,

representing the reflection coefficients associated with the tissue. Second, ultrasound images are typically very noisy.
Usually, additive noise models are used to describe the effect of noise in images. Filtering out the noise could enhance the
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images,butmore important it makes the image easier to code. If the noise has a gaussian distribution then a linear filter is
optimal for maximizing the signal-to-noise ratio. In our case, however, the goal is to maximize the subjective quality of the

iowpass component.

Thus two approaches can be considered: an additive model and a multiplicadve model. A model formulation that covers
both additive and multiplieative variates is depicted in Figure 2. It is similar in nature to the homomorphic model pioneered
by Stockham 3 for the purpose of image enhancement.

The filter H(.,), shown in Figure 2, is a lowpass filter with a cutoff frequency of wc = w/Dl. The nonlinear
decomposition is then described by the equation

= +

This decomposition is equivalently a nonlinear subband decomposition. The nonlinearity _F(.) is chosen to be of the form

S,(z) --

For B = I and a = 1, _P(.) is the identity mapping and we obtain the additive modal. For o = 0.231, W(:r) '-- _ log(x) in
the range 0 to 255, and we obtain the multiplicative model.

The parameter _ was chosen so that = and _F(=) have the same dynamic range, i.e. from 0 to 255. The parameter a
was chosen empirically to optimize the subjective performance. Qualitatively, we want the lowpass component to contain
as much useful detail as possible, while keeping constant the cutoff frequency of the filter H(w). To quantify this criterion,

we could try to minimize the difference between ln,ld and Zn,id tO address the aforementioned goal. Similarly, we could
try to minimize the energy in the texture t,_,_d. This ensures that the amount of information contained in the texture is not
significant. We have measured these quantities for values of a in the range 0.1 _< a <_ 2 for a sample set of ultrasound
images and the results are summarized in Figure 3. The graph (a) shows the dependency of the mean square difference

between ln,_d and zn,i,j and the graph (b) shows the dependency of the energy Oftn,i d on the parameter a.

We can see that the two criteria are conflicting, and a compromise between them is needed. The value a = 0.231 that

implies an approximately logarithmic mapping is in the range of values that provide a good tradeoff between the two criteria.
Therefore, the multiplicative model is a reasonable model to use for the encoding of ultrasound images.

The additive and multiplicative models are compared in Figure 6. A sample original ultrasound image is presented
together with the reconstructed images obtained by using the additive (a = 1) and multiplicative (a = 0.231) models. We
can see that the multiplicative model has improved subjective appearance.

Because this decomposition is similar to the homomorphic luminance-reflectance decomposition introduced by Stock-
ham3 in the context of image enhancement, we can also hope to be able to introduce some image enhancement capability
to the ultrasound images. In fact, the system is constructed with this feature. Unlike $tockham's approach where different
gains are imposed on the two components, we perform histogram modification of the lowpass component. This provides
greater flexibility for enhancement. The histogram transformation used in this paper is nonlinear and has the profile shown
in Figure 4. It was observed experimentally that the features most difficult to preserve during encoding are represented in
the low and medium amplitude range of the !owpass component. Thus, ¢ontrast modification in this region is expected to
enhance perceived quality. Preliminary results indicate that this is true. At this point enhancement results have not been
evaluated by medical specialists, but hopefully will be by the time of the conference presentation.

4 LOWPASS COMPONENT CODING

Taking into account the way the Iowpass component l.,i,j was obtained, it can be represented by _P(ln,i,j), which is a
bandiimited signal with a cutoff frequency of _r/Di in both horizontal and vertical directions. Therefore, _P(ln,ia) can be
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decimated by DI in both horizontal and vertical directions without loss of information due to aliasing. Since the mapping
_F(-) is one-to-one and onto, ln,ij can be decimated and reconstructed. By coding the decimated version of in,_d, the net
bit rate can be reduced dramatically.

One of the front-running image coding techniques is subband coding. 43 It refers to a broad class of systems where
the input is decomposed into suhband images and the subband images are coded for Iransmission or storage. In this work,
an new optimized subhand image coder is employed. ! This particular subhand coding system consists of decomposing
the lowpass component into 16 uniform subbands using the All two-band analysis filters introduced in reference [e].

The implementation can be made very efficient computationally by using specially designed recursive filters that require no
multiplication operations. ! The subhands arethen quantized using entropy-constrained multistage c|uantizers with intra-hand
and inter-band conditioning.

This subband coding system is described in detail in references [1 ] and [2]. Hence our discussion of this partof the coder
is brief. Let it suffice to say that the subband coder is based on encoding each subband pixel (one quantization stage at a
time) using conditional entropy coding. The conditioningis based on the quantized symbol values in the local neighborhood
of the pixel and in corresponding locations across the subbands. Conditional entropy coding of this form allows statistical
dependencies within and across subbands to be used to our advantage.

In addition however, we also extend the conditioningto include corresponding pixels in previous frames. Implementation
complexity limits the number of conditioning symbols that can be used practically, which is unfortunate. Therefore only
the most statistically important .conditioning symbols are used (the precise number being fixed a priori by implementation
constraints). For a fixed number of conditioning symbols, an algorithm that finds the location of conditioning symbols such
that the overall entropy is minimized is described in?

Conditioning onprevious frames is reasonable since there is a lot ofcorrelationbetween consecutive frames, especially
after the noise has been filtered out in the nonlinear subband decomposition stage. This conditioning scheme is described in
Figure 5, where only spatial conditioning is depicted. Inter-subband and inter-stage conditioning are not shown in the figure
for clarity resons. Solid lines represent intra-frame conditioning and dashed lines represent inter-frame conditioning. Note
that this conditioning scheme requires a large number of previous frames to be buffered. However,',.his is not a big problem
in our case, because the frames are small (64 by 64 pixels).

This type of conditioning for cardiology ultrasound video can be used to exploit the fact that the image sequence is
quasiperiodic, with a period given by the heartbeat rate. Therefore, we can use conditioning based on symbols from the
frame located one heartbeat period before the current frame. A couple of techniques can be used for estimating the heartbeat
period. Ideally, we would choose the value that minimizes the average codeword in the current frame. This method is

computationally intensive. A simpler method is to use for conditioning the flame that minimizes the difference between
itself and the current frame. However, ultrasound machine outputs often provide the EKG signal explicitly. Thus the
simplest way is to extract the period directly from the accompanying EKG.

5 TEXTURE CODING

The texture component is a valuable part of the coded signal in the sense that it contributes to the natural appearance of
the reconstructed image. However, much of this texture component is just random noise. One can postulate that the texture
of the tissue in the examined region is the same for a relatively long period of time, except when the sensor device is in
motion, and additive noise contributes most to the rapid time variations in the signal statistics. A simple approach to encode
the texture component is to decimate it in the temporal dimension. A texture.flame is then only encoded and Iransmitted
once every D_ frames. At the receiver, the same decoded texture frame is used for the synthesis of Dr consecutive frames.

For large values of Dr, this method may produce an unpleasant effect of static texture. In order to reduce this effect and
to have a more subjectively realistic decoded video sequence, two consecutively transmitted texture frames may be used
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Figure 5: The inter-frame and intra-frame conditioning scheme

alternatively. Alternating between these two texture frames every 1/30 seconds is an improvement but the flicker effects are
too strong. Further subjective improvement is achieved by switching between them every two or three 1/30 second periods.
Experiments have shown that the best subjective quality is obtained when we switch texture frames every three iowpass
component frames.

The same entropy-constrained quantization technique is used to encode the texture. The only difference is that condi-

tioning is realized only with respect to neighboring pixels and neighboring subbands. This is because there is no significant
correlation between textures D2 frames apart.

6 EXPERIMENTS AND RESULTS

If the lowpass component is encoded at RI bits per pixel and the texture at R2 bits per pixel, the overall bit rate in bits
per second is given by

f256 x 256RI 256 × 256R2' .
R= 30 + o2 .

The Iowpass component spatial decimation factor Dl can be equal to 8 if the coding system is used for positioning only, 4
if we need diagnostic quality, and 2 or even 1 if we implement a multiresolution system allowing zooming in the area of
interest. The texture component temporal decimation factor is in the range 25 to 40.

In Figure 7 we present an Original ultrasound image (a), the corresponding lowpass component (b), the reconstructed
image (c), and the reconstructed image with contrast enhancement (d). Enhancement has been performed using the histogram
transformation depicted in Figure 4 with the parameters L = 170 and f(L) = 210.

The parameters used for encoding are Dz = 4, £h = 60, R! = 0..45, R: = 0.25. The overall bit rate is then
R = 55kbps + 8kbps = 63kbps. so this example can be used for transmission ore/an ISDN line. We have used a uniform
64-subband decomposition, and a quanfizer having six stages and two code vectors per stage.

Encoded video segments will be presented at the conference.
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Abstract

This paper introduces a new framework for video coding that facilitates op-

eration over a wide range of transmission rates. The new method is a sttbband

coding approach that employs motion compensation, and uses prediction-frame

and intra-frame coding within the framework. It is unique in that it allows
lossy coding of the motion vectors through its use of multistage residual _ector

quantization. Moreover, it provides a rate-distortion-based mechanism for al-

ternating between intra-frame and inter-frame coders. The framework provides

an easy way to control the system complexity and performance, and inher-

ently supports multiresolution transmission. Experiments using the standard

sequence Miss AMERICA show that the coder significantly outperforms the

p × 64 coder (H.261 standard), while still maintaining reasonable complexity.

1 Introduction

Over the past several years many effective approaches to the problem of video coding

have been demonstrated. Motion compensation (MC) is the cornerstone of most video

coding systems presently in vogue and is the basic mechanism by which temporal

redundancies are captured in the current H.261 and MPEG stahdards. The coding

gains achievable by using motion compensated prediction and residual frame coding

are well known. Similarly exploiting spatial redundancy within the video frames

plays an important part in video coding. DCT-based schemes as well as subband

coding methods have been shown to work well for this application. Such methods

are typically applied to the MC prediction residual and to the individual frames. In

the strategy adopted by MPEG the sequence of video frames ;s first grouped into

blocks of N, where the first frame in the block (the "so-called" I-frame) is coded

using an intra-frame DCT coder, while the other N - 1 frames (called P-frames) are

described by motion vectors and coded residuals. Clearly such an approach has been

very effective. However, there are notable limitations. In particular, the high level of

performance is not maintained over a full range of rates. Most notably, MPEG is not

suited for low bit rate applications below 64 kbps. In addition, it is limited in the

way it exploits the spatio-temporal variations in a video sequence.

In this paper we introduce a more flexible framework based on a subband repre-

sentation, motion compensation, and a new class of predictive quantizers. As with

MPEG, the concept of I-frame and P-frame is used. However the coding strategy opti-

mizes spatio-temporal coding within subbands. Thus a unique feature of the proposed

1This work was supported by a grant from NASA



approach is that it allows for the flexible allocation of bits between the inter-frame

and intra-frame coding components of the coder. This is made possible by the use of

multistage residual vector quantizers (RVQ) in the subbands and a high order condi-

tional entropy coding scheme that exploits statistical dependencies between motion
vectors in the same subband as well as between those in different subbands of the

current and previous frames, simultaneously. The new approach, which we develop

next, leads to a fully scalable system, with high quality and reasonable complexity.

2 The Video Coder

A high-level description of the framework is shown in the block diagram in Figure
1. Each frame of the input is first decomposed into subbands using a tree-structured
recursive analysis filter bank. The filter bank is based on a separable two-band de-

compositions, which employs allpass polyphase filters as described in [1]. Each of

the subbands is then decomposed into blocks of size W x H, where each block X

is encoded using two coders. One is an intra-frame coder, denoted I-subband coder;

the other is an MC-predictive coder, denoted P-subband coder. The encoder that

produces the minimum Lagrangian distortion is selected, and side information is sent

to the decoder indicating which of the two coders was chosen.

As will be explained later, both the l-subband and P-subband coders employ high

order entropy coding which exploits dependencies between blocks within and across

subbands. Since only one coder is chosen at a time, symbols representing some of the

coded blocks in either coder will not be available to the decoder. Thus, both the en-

coder and decoder must estimate these symbols. More specifically, suppose that the

I-subband coder is chosen. Then, the coded block is predicted and quantized using the
P-subband coder at both the encoder and decoder. If the P-subband coder is chosen,

then the motion-compensated reconstructed block is quantized using the I-subband

coder, also at both the encoder and decoder. In this case, the additional complex-

ity is relatively small because the the motion-compensated reconstructed blocks are
available at both ends, and only I-subband quantization is performed. In practice,

most of the blocks are coded using the P-subband coder. Thus, the overall additional

complexity is relatively small.

Figure 2 shows a typical generic coder (GC) structure for the I-subband coder. An

input block is first divided into sub-blocks or vectors, which are then quantized using

a multistage residual vector quantizer (OQ) [2] and entropy coded using a binary

arithmetic coder (BAC) [3, 4] that is _pecified by a finite-state machine (FSM) high

order statistical model [5, 6].

Figure 3 shows the structure of the P-subband coder. A full-search block matching

algorithm (BMA) using the mean absolute distance (MAD) is used to estimate the

motion vectors. Since the BMA does not necessarily produce the true motion vectors,

we employ a thresholding technique for improving the rate-distortion performance.
Let d,,;, be the minimum MAD associated with a block to be coded. Also, let

T > 1.0 be a threshold, which is empirically determined from the statistics of the

subband being coded. We then choose all motion vectors with associated MADs di
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that satisfy _4_ < T. When the motion estimate is accurate, the number M of
drnin

candidate motion vectors is more likely to have a value of 1. in cases where the

video signal undergoes sudden changes (e.g., zoom, occlusion, etc ... ) that cannot

be accurately estimated using the BMA algorithm, a large number of motion vectors

can be chosen as candidates, thereby leading to a large complexity. Thus, we limit

the number M of candidate motion vectors to a relatively small number M_ax (e.g.,

3 or 4).

In many conventional video subband coders as well as in MPEG, differential en:

tropy coding of motion vectors is employed. Since motion vectors are usually slowly

varying, the motion bit rate can be further reduced by exploiting dependencies not

only between previous motion vectors within and across the subbands but also be-

tween the vector coordinates. For this purpose, we employ a high rate multistage

residual 2-dimensional vector quantizer cascaded by a BAC specified by the FSM

statistical model described later. After the M candidate motion vectors are vector

quantized, M motion-compensated prediction blocks are generated, and correspond-

ing residual blocks are computed. The encoding of the residual block is done in the

same manner as for the original block.

An important part of the encoding procedure is the decision where either the I-

subband or the P-subband coders must be chosen for a particular block. Figure 1

shows the encoder procedure. Let R_ and D_ be the rate and distortion associated

with I-subband coding the block X, respectively. Also, let /_M, 1 _< m < M be

the rate required by the 2-dimensional motion coder for the ruth candidate motion

vector and (R_,D_) be the rate-distortion pair for the corresponding residual coder.

Assuming A is the Lagrangian parameter that controls the rate-distortion tradeoffs,
the I-subband coder is chosen if

Dj + ARj < D_' + A(R_ + R_), form = 1,..., M.

Otherwise, the P-subband coder that leads to the lowest Lagrangian is chosen.

Statistical modeling for entropy coding the output of the I-subband, motion vec-

tor, and residual coders consists of first selecting, for each subband, N conditioning

symbols from a region of support representing a large number of neighboring blocks

in the same band as well as other previously coded bands. Then let F be a mapping

that is given by

u = F(s,,s2,...,sN),

where sl, s2,..., sly are the N selected conditioning symbols and u E/t represents the

state of the stage entropy coder..The mapping F converts combinations of realizations

of the conditioning symbols to a.particular state. For each stage in ea_ subband,

a mapping F" is found such that the conditional entropy H(J]U), where J is the

stage symbol random variable and U is the state random variable, are minimized

subject to a limit on complexity, expressed in total number of probabilities that must

be computed and stored. The tree-based algorithms described in [5, 6] are used to

find the best value of N subject to a limit TI on the total z/umber of probabilities.

The PNN algorithm [7], in conjunction with the generalized BFOS algorithm [8], is

then used to construct tables that represent the best mappings F* for each stage
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entropy coder subject to another limit Tz (Tz << T1) on the number of probabilities.

Note that the number T1 controls the tradeoffs between entropy and complexity of

the PNN algorithm. The output of the RVQs are eventually coded using a adaptive

binary arithmetic coders (BACs) [3, 4] as determined by the FSM model. BAC coders

are very easy to adapt and require small complexity. They are also naturally suited

for this framework because experiments have shown that a stage codebook size of 2

usually leads to a good balance between complexity and performance and provides

the highest resolution in a progressive transmission environment.

3 PRACTICAL DESIGN ISSUES

In both the I-subband and P-subband coders, the multistage RVQs and associated

stage FSM statistical models are designed jointly using an entropy and complexity-

constrained algorithm, which is described in [5, 6]. The design algorithm iteratively
A

minimizes the expected distortion E(d(X, X)} subject to a constraint on the overall

• entropy of the stage FSM models. The algorithm is based on a Lagrangian minimiza-

tion and employs a Lagrangian parameter )_ to control the rate-distortion tradeoffs.

The overall FSM statistical model, or the sequence of stage FSM models, enables the

design algorithm to jointly optimize the entropy encoders and decoders subject to a

limit on complexity. To substantially reduce the complexity of the design algorithm,

only independent subband fixed-length encoders and decoders are used. However,

the RVQ stage quantizers in each subband are jointly optimized through dynamic

M-search [9], and the decoders are jointly optimized using the Gauss-Seidel algo-

rithm [2].

To achieve the lowest bit rate, the FSM models used to entropy code'the output

of the RVQs should be generated on-line. However, this requires a two-pass process

where statistics are generated in the first pass, and the modeling algorithm described

above is used to generate the conditional probabilities. These probabilities must then

be sent to the BAC decoders so that they can track the corresponding encoders. In

most cases, this requires a large complexity. Moreover_ even by restricting the number

of states to be relatively small (such as 8), the side information can be excessive.

Therefore, we choose to initialize the encoder with a generic statistical model, which

we generate using a training video sequence, and then employ dynamic adaptation

[3] to track the local statistics of the motion flow.

The proposed coder has many practical advantages, due to both the subband

structure and the multistage structure of RVQ. For example, multiresolution trans-

mission can be easily implemented in such a framework. Another example is error

correction, where the more probable of the two stage code vectors is selected if an

uncorrectable error is detected. Since each stage code vector represents only a small

part of the coded vector, this will not significantly affect the reconstruction or the
FSM statistical models.
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4 EXPERIMENTAL RESULTS

To demonstrate the performance of the new entropy coding technique, we designed

a low bit rate coder for QCIF (176 x 144 x 10 Hz) YUV color video sequences. We

use the full-search algorithm for estimating the block motion vectors with mean ab-

solute difference (MAD) criterion for the measure of the match between two blocks.

In practice, it is found that the MAD error criterion works satisfactorily well [10].

Motion estimation is performed only on the Y luminance component and the es-

timated motion vector field is subsequently decimated spatially in horizontal and

vertical directions, and in magnitude for the use of motion compensation of U and

V chrominance signals. Figure 4 (a) shows the overall bit rate usage and Figure 4

(b) shows the Peak SNR result of our coder in comparison with H.261 standard for

50 frames of the color test video sequence MIss AMERICA. The average bit rate is

approximately 15.98 kbps and the average Peak SNR is 35.13 dB.
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ABSTRACT

A rate-distortion-constralned statistical motion estimation
algorithm is presented here that leads to improvements in
subband video coding. The main advantages of the algo-
rithm is that it requires a relatively small number of com-
putations, produces a much smoother motion field, and
employs a more effective measure of performance that the
conventional mean absolute difference or mean squaxed er-
ror. The proposed algorithm circumvents problems in the
motion compensation loop such as illumination variations,
noise, and occlusions, by providing a mechanism for alter-
nating between intra-frame and residual coding. Experi-
mental results demonstrate that the corresponding video
coder outperforms the H.263 in terms of motion vector
search complexity and overall bit rate at the same repro-
duction quality.

1. INTRODUCTION

In conventional video coding systems, block matching al-
gorithms (BMAs) are often used for motion estimation to
remove temporal redundancies [1, 2, 3]. Such algorithms
form the foundation for many video coders and are part of
the H.261, H.263, and MPEG standards [4, 5, 6, 7], mainly
because they are relatively simple in concept and design,
but also because they tend to work reasonably well.

A disadvantage of BMAs, in general, is that their perfor-
mance is sensitive to illumination changes, noise, occlusion,
and reconstruction quality of previously coded frames. Mo-
tion vector estimates often do not correspond to physical
motion in the video scene. Even where motion does not

exist, BMAs produce an estimate. This can lead to a rough
motion field, .where many motion vectors carry little use-
ful information, yet are very difficult to encode. Moreover,
since a mean squared error or mean absolute difference dis-
tortion measure is usually used as the matching criterion,
the motion vector estimate does not necessarily lead to the
best rate-distortion performance [8, 9, 10]. To address some
of these problems, the MPEG-2 standard, for example, pro-
vides a mechanism for alternating between intra-frame and
inter-frame coders.

In this paper, we introduce a rate-distortion constrained
statistical motion estimation algorithm that not only re-
quires a level of complexity that is comparable to that of

This work was supported in part by the Joint Services Elec-
tronics Program (JSEP).
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Figure 1: Block diagram of rate-distortion-constrained sta-
tistical motion estimation.

the fastest BMAs but also Solves most of the above prob-
lems, thereby leading to a more consistent motion field.
The algorithm is used for motion estimation on the subband
level [11, 12], where high order entropy-constrained residual
scalar quantization is employed for coding both the original
and residual subbands. The proposed algorithm exploits
the natural motion field smoothness that tends to exist spa-
tially, temporally, and across subbsnds. It selects motion
vectors based on the current behavior of the motion field

and also based on the performance of the residual coder,
which is also the ultimate objective performance measure
of the video coder. Although the proposed algorithm is
presented in the context of subband video coding, its un-
derlying principles can also applied in other contexts.

2. THE PROPOSED MOTION ESTIMATION
ALGORITHM

The proposed motion estimation algorithm is illustrated
in Fig. 1. Each frame of the video sequence is decomposed
into M subbands using a uniform subband decomposition-
structure. The algorithm is applied to each subband in-
dependently, using information from previously coded sub-
bands (see F/g. 2). First, sufficiently large block and search
region sizes are chosen for each subband. All of the possi-
ble motion vectors in the search region are then ciivided into
dusters or rectangular regions. This is illustrated in Fig.
3, where each black dot denotes a motion vector location.
The search region shown in the figure corresponds to 4-4
displacements for each of the two coordinates. During the
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Figure 2: Inter-frame, inter-subba_d, and intra-subband
dependencies for motion vectors.
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Figure 3: An example of first layer and second layer passes
in intra-band motion estimation.

design process, conditional probabilities are generated for
each of the rectangular regions, and these probabilities are
grouped into tables, each corresponding to a conditioning
state. The states are derived based on previously coded mo-
tion vector in a subband-spatial region of support. In other
words, a high order statistical model that is driven by a
tinite-state machine (FSM) is built that exploits statistical
dependencies in the motion field between motion vectors
within the current subband as well u between subbands

in both the same frame and previous frames. Complexity
reduction techniques described in [13] allow us to use a suf-
ficiently large conditioning subba.nd spatio-temp'oral region
of support, yet produce only a small number of condition-
ing states. Since the motion field is usually quui-stationaary,
adaptation is used during the encoding procedure, but the
conditioning network is kept fixed for a lasger number of
frames.

Given a conditioning state, the algorithm, illustrated
in Fig. 3, performs two parses. In the first layer pass,
the motion vector (solid line terminated by x) with largest
probability p, contained in the rect,mgular region with the
largest conditional probability pj (i.e. region 1 in Fig. 3)

is selected first as the candidate motion vector. A high
order entropy-constrained residual coder [13] is then ap-
plied to the difference between the original block and the
motion-compensated prediction block, producing a rate Rr
and a distortion Dr, as shown in Fig. 1. Next, we com-
pute the Lagrangian J_ --- D, 4- _(R_ 4" P_), where R,_
is the motion vector bit rate, set here for simplicity to the
sum of conditional self-information components I R',,( =
-log2(pi ) -log2(pj ). Let J• be the current running av-
erage Lagrangian and T_ be a threshold 2 that determines
the tradeotTs between complexity and rate-distortion perfor-
mance. If Jx <_ T_(Ja), then the selected motion vector is.
accepted and encoding is terminated for that block by send-
ing motion and residual encoded bits to the channel. At this
point, practically no computations have been p.erformed for
the estimation procedure. All multiplies/adds performed
would have been needed for encoding subsequently. If J_ >
T_(Ja), then the selected motion vector is rejected and a
signal is fed back to the motion estimator, where the most
probable motion vector located in the region with the sec-
ond lugest conditional probability pj is selected as an al-
ternative candidate. This is indicated by the dashed line
terminated by × in region 2 of Fig. 3. This procedure is
repeated until either the above condition is met, when en-
coding is aboxted, or all regions are exhausted. In cases
where little or no motion exists in the video scene, encod-
ing is aborted in the eaxly stages of the first layer pass.
However, in cases where the video signal undergoes sudden
changes (e.g., zoom, occlusion, illumination), accurate mo-
tion vectors cannot be predicted based on the probabilities
in the model because no o priori information about sudden
motion variations is available. As a result, an inaccurate
motion vector predicted by the statistical model will gener-
ally lead to an increase in the Lagrangian value J_. In such
cases, a second layer pass is employed.

In the second layer pass, the lowest Lagrangian J_, is
compared to'Ja. If 3_, > T2(2o), where T2 is a threshold,
whose best value is found experimentally to be between 2.0
and 3.0, then the algorithm exits. Otherwise, the region
that led to the lowest Lagrangiaal is again considered, where
other less probable motion vectors belonging to the same
region are chosen as candidates. The algorithm proceeds
by applying the stone procedure as in the first layer pass.
In other words, for the next most probable motion vector,
the new motion-compensated prediction block is computed,
and the same entropy-constrained residual scalar coder is
applied to the corresponding residual block. The same pro-
endure is repeated until the proper condition is satisfied, or
all regions are exhausted. Finally, in the case where the
algorithm exits the two passes without yielding say "good,
motion vector candidate, the lowest Lagrangian produced
during both passes is compaxed to that of the intra-frame
coder, and the coder leading to the lower value is used.
Details of the rate-distortion-based mechanism, by which a
particulu coder is chosen, u well u a complete description
of the residual coder can be found in [12].

JNote that by storing - 1o82(p) instead of a probability p, no
io8;_ operations need to be performed.

_The best value of 7"1is determined experimentally, and is
usue2ly between 1.0 and 1.$.
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$. ADVANTAGES OF THE PROPOSED
ALGORITHM

At first glance, the proposed motion estimation algorithm

seems quite complicated. However, experimental results
show that, depending on the bit rates of operation and
the contents of the video scene, our algorithm stops af-

ter the first stage of the first layer pass, which requires
practically no computations, more than 90% of the time.
Moreover, the algorithm completes both passes in only ap-

proximately 2_ of the cases. Besides its computational

advantage, the proposed algorithm has several other fea-
tures worthy of mention. First, it efficiently and effectively

exploits dependencies between motion vectors by using a

two-layer, region-based and vector-based, statistical model.
Second, it improves the consistency of the spatio-temporal
smoothness of the motion field and reduces sensitivity of
the estimation by favoring the most probable candidates.
To illustrate this, Figures 4 (a) and (b) show the compari-
son between the motion fields resulted from our algorithm
and the full-search BMA. The increased smoothness ob-

served in Fig. 4 (b) indicates a lower entropy. Not oxdy it
is easier to encode the motion vectors in Fig. 4 (b), but
the subjective quality of the reconstructed video frames is
also better. Another advantage of our _lgorithm is that it

directly embeds the residu_d coder into the estimation loop,

thereby potentially leading to overall better rate-distortion

performance. Finally, note that the number of computa-
tions required by the proposed motion estimation algorithm

is variable, and depends on the content of the video scene.

In variable length video coders (such as MPEG), this can
be incorporated into the buffering schemes already being
used in bit rate control.

4. EXPERIMENTAL RESULTS

In the experiments, the QCIF version of the Miss AMERICA

sequence is used for the test sequence. To compare the per-
formance of our video coder with the current technology for

low bit rate video coding (i.e., below 64 kbits/sec), we used
the software simulation model of the new H.263 standard

obtained from flp:/foonde.nto.no/pub/tmn [14].

The subband decomposition is a uniform 2 × 2 exact

reconstruction analysis/synthesis system. We chose the re-
cursive fiJter banks for their computational efficiency. The
block size for searching the motion vector candidates in our
algorithm is 4 × 4. A search region of -I-4 pixels in both
spatial directions is chosen. The threshold values T_ and T2

are set to be 1.2 and 3.0 respectively. The current running
average Lagrang]a_ 3, is computed based on the previous

four Lagra_gian 3_ values in order to make the algorithm

more adaptive. All the motion vectors throughout the ex-
periments are at whole pixel _curacy. Motion estimation
is performed only for the luminance component and the es-

timated motion vector field was subsequently used for the
motion compensation of the chrominance signals. The tar-
get bit rate is.set to be approximately 16 kbits/sec.

Fig. 5(a) and (b) show the bit rate usage _ad the PSNR

coding performance of our coder and the H.263 standard for
50 frames of the luminance component of the color test se-
quence MISS AMERIC^. We fixed the PSNR and compared

the corresponding bit rates required by both coders.
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Figure 4: Motion vector field obtained by (a) FS-BMA
and (b) our algorithm on the low-pass subband of FLOWER
GARDEN (SIF format) Frame No. 2. We used a -I-4 pixel
search region with block size of 4 x 4.

While the average PSNR is approximately 39.4 dB for
both coders, the average bit rate for our coder is only 13.245

kbits/sec as opposed to 16.843 kbits/sec for the H.263 stan-

dard. To achieve the same PSNR performance, our coder
requires only 78% of the overall bit rate of the H.263 video
coder.

Finally, to illustrate the computational reduction in mo-
tion estimation, we show the comparison in terms of number

of matches required for our algorithm and the full-search

BMA. For the FS-BMA with the same :!:4 search region
in a subband frame, the number of matches required is
22 x 18 × 81 : 32076, and 4 x 4 = lfi MAD calculations for

each corresponding match. Our algorithm requires at most
22 x 18 x (9 + 9 -- 1) : 6732 matches with _/table look-up
of codebook size 9 with no MAD calculations. For exam-

ple, in Frame 41 of the MIss AM_ERZCA sequence, 305 out
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of 22 × 18 = 396 matches are found in the first stage of the

first layer pass. Furthermore, no match is found to exhaus-
tively search all stages in both first and second layer passes.
The algorithm uses a total of 1202 matches in comparison
with 32076 matches that would have been required by the

FS-BMA, and our algorithm requires no MAD calculations.
In conclusion, our algorithm outperforms the current

H.263 standard by more efficient utilization of bit rates

given an image quality. In terms of search complexity in
motion estimation, our algorithm is able find a better mo-
tion vector field in a rate-distortion sense and requires a

fraction of the computation in comparison to the full-search
BMA.
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Figure 5: The comparison d overall performance -- (a) bit
rate usage, "and (b) PSNR quality, -- of our video coder
with H.263 standard for Mzss AMEmCA QCIF sequence at
10 frames/sec. Not shown in (a) are the values 5465 bits -

and 7381 bits used by intra-frame (Frame 1) of our coder
and H.263 standard respectively. Only the PSNR of Y lu-

minance frames are shown in (b).
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